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Abstract Cardiac rhythm management devices provide therapies for both arrhythmias and
resynchronisation but not heart failure, which affects millions of patients worldwide. This
paper reviews recent advances in biophysics and mathematical engineering that provide a novel
technological platform for addressing heart disease and enabling beat-to-beat adaptation of
cardiac pacing in response to physiological feedback. The technology consists of silicon hardware
central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical
response of biological central pattern generators (bCPGs). We discuss the limitations of present
CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic
medicine. To test the system, we have focused on the cardio-respiratory oscillators in the
medulla oblongata that modulate heart rate in phase with respiration to induce respiratory
sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically
realistic (Hodgkin–Huxley type) neurones and synapses. Our hCPG comprises two neurones that
antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart.
We show how recent advances in modelling allow the motor output to adapt to physiological
feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that
receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific
time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of
stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms
of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will
now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use
in cardiac disease.
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An unmet clinical need

Heart failure affects around 900,000 people in the UK,
accounts for 5% of emergency hospital admissions and
utilises 2% of all NHS hospital bed days (Cleland
et al. 2012). In the USA, over 1 million patients are
admitted to hospital for congestive heart failure (Hall
et al. 2012). Despite use of the optimal medical therapy
available, the prognosis remains poor for this group of
patients who also have a high symptom burden. Patients
in whom symptoms are refractory to medical therapy
may be considered for cardiac resynchronisation therapy
(CRT) using biventricular pacemakers. Unfortunately,
these devices are only appropriate in a minority of patients
with a left bundle branch block pattern (LBBB) ECG
(25% of the total heart failure population). Furthermore,
amongst recipients of CRT, 30% of patients do not respond
clinically (Jeevanathan et al. 2009). Thus, there remains
a substantial unmet clinical need in the heart failure
population and new interventional therapies are required.
An early prognosis indicator of heart disease is loss of
respiratory sinus arrhythmia and this raises the question as
to its physiological role and whether reinstatement could
provide therapeutic benefit.

Respiratory sinus arrhythmia (RSA) and its loss in
cardiovascular disease

The healthy heart is subjected to chronotropic modulation
by the respiratory cycle (Anrep et al. 1936); this is
respiratory sinus arrhythmia (RSA). RSA is a naturally
occurring arrhythmia that is prominent at birth and
in athletes but is lost with ageing and cardiovascular
disease. RSA is brought about by a combination of afferent
feedback (pulmonary lung inflation, baroreceptors) and
central coupling between medullary respiratory and
cardiac vagal motor neurones (McAllen & Spyer, 1978;
McAllen et al. 2011). Despite RSA being highly preserved
during evolution (cartilaginous fish, amphibians, reptiles)
its functional significance remains both incompletely
understood and controversial (Larsen et al. 2010). It has
been suggested that the physiological function of RSA is
to match ventilation and perfusion in the lungs thereby
optimising oxygen uptake and carbon dioxide removal
(Hayano et al. 1996). In dogs, Giardino et al. (2002)
showed that dead space-to-tidal volume ratio and intra-
pulmonary shunt fraction decreased and that oxygen
uptake was enhanced. They measured the ventilatory
equivalents of CO2 and O2 during paced breathing
in healthy humans and concluded that gas exchange
efficiency increased with RSA. In contrast, Sin et al.
(2010) concluded that the improvements in gas exchange
efficiency were unrelated to RSA in humans. Additionally,
Elstad has reported a role for RSA in stabilising blood pre-
ssures generated from the left and right ventricles (Elstad,

2012). Finally, Grossman & Taylor (2007) discussed
the importance of RSA for optimising energy use by
cardio-respiratory synchronisation, consistent with the
idea that RSA saved heart beats.

Recently, we built a mathematical model to under-
stand the functional role of RSA and to address the
inconsistencies of previous reports (Ben-Tal et al. 2012,
2014). We demonstrated that although gas exchange
efficiency can improve with both slow and deep breathing,
and increased mean heart rate, this was all unrelated to
RSA. Rather, we showed that RSA minimises the work
done by the heart, so saving energy and making it more
efficient, while maintaining physiological levels of arterial
carbon dioxide. Given that poor control of arterial CO2

(hypocapnia) contributes to central sleep apnoea in �45%
of patients with heart failure (Javaheri et al. 1995), RSA
may, via its ability to regulate PaCO2 , reduce incidence of
central sleep apnoea and provide therapeutic benefit for
a failing heart. Consistent with this notion is the finding
that RSA may increase cardiac efficiency by saving energy
(Ben-Tal et al. 2012, 2014). This result has led to the
notion that in heart failure, a condition when heart rate
variability is diminished, re-instatement of RSA could
provide therapeutic benefit to cardiac pumping (Mortara
et al. 1994). To begin to address this, we have designed
and tested a silicon hardware central pattern generator
(hCPG) based on realistic neurones with Hodgkin–Huxley
kinetics.

Why biological central pattern generators (bCPGs) are
better than digital electronics for rhythm generation

The study of bCPGs of invertebrates (Kristan et al. 2005;
Marder et al. 2005; Selverston, 2009) has shown why
neural networks are better suited than digital electro-
nics for generating biological rhythms. First, neurons are
intrinsically non-linear devices. Non-linearity, which is
often an undesirable property in conventional electronic
design, is the property that enables bCPGs to integrate
their motor output based on incoming biological stimuli
(Rabinovich et al. 2000). Second, bCPGs are able to
maintain the precise timing of burst discharges within the
rhythmic cycle by adapting neuron phase lag to changes
in rhythm frequency. Marder et al. (2005) have ascribed
this property to frequency-dependent synaptic depression
or activation of transient outward potassium current on
release from a hyperpolarised membrane potential, for
example. These mechanisms are essential for maintaining
the correct sequence of motor signals as the rhythmic
frequency increases (Mamiya & Nadim, 2004). For
instance, the neuromeres of leech maintain the sequence
of contraction of body wall segments as the swimming
rate increases (Kristan et al. 2005). This approach could
conceivably be used to maintain the contraction of
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the four chambers of the heart during tachycardia, for
example. However, existing cardiac resynchronisation
pacemakers have fixed timings which are adjusted by
the practitioner and cannot adapt when heart rate
increases. An hCPG, however, would provide beat-to-beat
instantaneous adjustment of the inter-ventricular (τVV)
and atrio-ventricular (τAV) delays.

The basic building block of a bCPG is the half-oscillator
which consists of two neurons inhibiting each other
(Varona et al. 2001). This elementary circuit has been
thoroughly studied in the leech where it acts as a two
phase cardiac pacemaker (De Schutter et al. 1993; Marder
& Calabrese, 1996) producing fundamental heartbeat.
The inhibitory pair is surrounded by four pairs of inter-
neurons whose role is to switch motor drive between
the two hearts of the leech in cycles lasting 20–40 beats
(Norris et al. 2006). Three-phase bCPGs are found in the
stomatogastric ganglion of the lobster and the respiratory
pattern generator of Lymnaea (Taylor & Lukowiak, 2000;
Selverston, 2009). They incorporate a third neuron which
interacts with the others via mutually inhibitory links. In
mammals, respiratory rhythms are equally generated by
a three phase bCPG located in the brainstem (Fig. 1).
This consists of three neurons: early-I (early inspiration),
post-I (post inspiration) and aug-E (late inspiration)
(Richter, 1982; Smith et al. 2007; Abdala et al. 2009). These
neurones are considered by us to be connected together
via reciprocal inhibitory synapses (Smith et al. 2007,
2013). It has been argued that the coupled respiratory
oscillators, which are active in the expiratory phase and
located in the Bötzinger complex (BötC: post-I and aug-E
neurons) and in the inspiratory phase in the pre-Bötzinger
complex (pre-BötC: early-I), derive from the gill and lung
oscillators of earliest air breathers (Vasilakos et al. 2005).
Neurocircuitry in the ventrolateral medulla oblongata
couples the respiratory oscillator with both cardiac vagal
preganglionic motoneurones, which slow the heart rate
in expiration, and the diaphragm, to inflate lungs (Fig. 1).
The amplitude and phase of heart rate modulation depend
on physiological feedback (blood pressure, lung inflation,
hormonal release) which is integrated, in part, by the
circuit in Fig 1. It is this function that we would ideally wish
to replicate to either boost or restore naturally occurring
RSA.

Generalising this to networks of N neurons reciprocally
connected by inhibitory synapses gives so-called
Winnerless dynamics (Laurent et al. 2001). As neurons
compete for firing, electrical activity ‘bounces’ from
one neuron to another along closed loop trajectories
producing competition without a winner (Rabinovich
et al. 2001, 2006). Theoretical studies of these inhibitory
networks have demonstrated two more properties of
CPGs. The firing sequence of neurons along these
trajectories generates motor patterns which are extremely
stable with respect to noise yet very sensitive to changes

in input signal. The reason for this is that neurons that
compete via mutually inhibitory connections develop
mildly chaotic dynamics characterised by attractors
surrounded by basins of attraction. Assuming moderate
noise is present in the system, its effect is only to perturb
the oscillations of the CPG about the attractor. The CPG
then returns to the stable oscillatory mode when the
perturbation has been removed. In contrast, a pulsed
input, which unlike noise has non-zero time average,
may kick the CPG state from one basin of attraction
to another by moving across dynamic saddle points.
This has the advantage that pacing devices based on
neural electronics will be inherently safer because they
are not easily perturbed when set into a given mode
of oscillation. The CPG theoretically behaves like an
associative memory with (N−1)! attractors where the
same circuit will produce different modes of oscillation
in response to a given stimulus (Bick & Rabinovich,
2009). Lastly, CPGs are very robust. The natural life span
of the lobster is 25 years and the rhythmic patterns of
the stomatogastric ganglion must be preserved over this
time despite changes in neurotransmitter production. This
bCPG has been shown to restore the original modes
of oscillation even after the structure of the network
had been impaired (Thoby-Brisson & Simmers, 2002).
In Drosophila, the connectivity of CPGs is present at
birth and this enables the correct motor patterns to be
generated innately (Suster & Bate, 2002). The mammalian
respiratory rhythm generator is another good example of
the robustness of the bCPG despite constant state changes
during exertion, speech, swallowing and sleep states. The
addition of bCPG-like technology to pacemakers, which
are known to be affected by parasitic electromagnetic fields
in the leads (e.g. within magnetic resonance scanners),
would improve the safety of cardiac rhythm management.
hCPGs emulating the neuro-circuitry of the brainstem
(Fig. 1) have the potential to restore a number of important
cardiac functions (Fig. 2). These include: RSA, adaptation
of heart rate to effort and beat-to-beat adaptation of
atrio-ventricular and inter-ventricular delays in cardiac
resynchronisation.

The limitations of software neuron CPGs

CPGs have been modelled using computational neuron
models to investigate network dynamics (Rabinovich et al.
2001, 2006). Computer simulations of these networks
(sCPGs), however, rely on increasingly reductive neuron
models as network size increases. One reason for this is that
large systems of Hodgkin–Huxley equations (Hodgkin &
Huxley, 1952) develop stiffness as a result of incorporating
multiple time constants. The accurate integration of stiff
systems of equations causes computer processing time to
rise exponentially with the size of the network. Wojcik

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society



766 A. Nogaret and others J Physiol 593.4

et al. (2011) and Zhao & Nogaret (2014) have mapped
the dynamics of three Hodgkin–Huxley neurons that
interact through mutually inhibitory synapses. The time
required for integrating the output of such an elementary
network or even a single neuron with seven ion channels
(Meliza et al. 2014) is of the order of several minutes.
Digital technology is therefore inadequate for making
cardiac implants that must integrate physiological feed-
back in real time. Approximate neuron models are not
suitable either as neurons must produce motor signals
with the same degree of realism as complex mammalian
neurons, which host a wide range ion channels. In contrast,
software neurons have the advantage of flexibility and
have been successfully interfaced with bCPGs to substitute
one bCPG neuron with a software neuron model running
on digital processing board. In this way, Olypher et al.
(2006) and Sorensen et al. (2004) have controlled the
burst duty cycle of the leech heart bCPG by artificially
changing calcium and h-current properties in the model
neuron. Prinz et al. (2004) and Sharp et al. (1993) have
developed computer controlled conductances that inject

specific time-dependent currents in order to tune the
coupling between neurons. This has enabled Pinto et al.
(2001) to change the firing sequence of stomatogastric
neurons in the lobster. To meet the demands of greater
performance for neural model simulation and dynamic
clamps, several groups are turning to field programmable
gate arrays (Graas et al. 2004; Mak et al. 2006).

Hardware implementations – the analog way

Analog neural computation is the approach needed for
generating accurate motor patterns in real time with
instantaneous response time irrespective of the size of
the network or the complexity of the neuron models.
To date, technologists have only implemented hCPGs
for engineering applications such as modelling the gait
of robots (Briggman & Kristan, 2008), the walking and
swimming motions of the salamander (Ijspeert et al. 2013)
or the undulation of robotic fish (Lee et al. 2007). However,
neurons used in these studies are simplified models based
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Figure 1. Regulation of the cardio-respiratory system by biological CPGs (bCPGs) in the brainstem
The respiratory bCPG is based on a group of three mutually inhibitory neurons named post-I, aug-E and early-I
which generate a three phase rhythm in the following sequence: inspiration (early-I fires), post-inspiration (post-I
fires) and expiration (aug-E fires). Pulmonary lung inflation stimulates vagal feedback that inhibits inspiratory
neurons. By projecting excitatory synapses to post-I neurons, arterial baroreceptors provide part of the feedback
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and early-I neurons that via aug-I neurones send signals to inhibit cVN and excite phrenic motoneurones that
innervate the diaphragm. cVN activity has the effect of slowing heart rate. This depressive action is balanced
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via sympathetic innervation. Figure based on circuits described in Smith et al. 2007 and Smith et al. 2013.
Abbreviations: VRC, ventral respiratory group; PN, phrenic nerve; cVN, cardiac vagus nerve; SN, sympathetic
nerve; VN, vagus nerve; GPN, glossopharyngeal nerve; RTN, retro-trapezoid nucleus; , excitatory link;

, inhibitory link.
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on various degrees of approximation, which would be
unsuitable for driving physiological systems that need to
integrate afferent feedback signals in vivo. Lee et al. (2007)
used the Hindmarsh–Rose neuron (Hindmarsh & Rose,
1984) which models bursting dynamics but is constrained
by a stiff parameter space that cannot be easily adjusted
to fit real neurons. Nakada et al. (2003) have proposed
an hCPG that generates the motor sequences of different
horse gaits: walk, trot and gallop. Switching from one gait
to another, however, involved a physical reconfiguration of
the network rather than the application of the appropriate
stimulus to switch from one oscillator (attractor) mode
to another (Zhao & Nogaret, 2014). To our knowledge
hCPGs have not yet been developed for neuro-stimulation.
Our interests are in building hCPGs for naturalistic and
adaptive pacing of cardiac function, as described in Fig. 2.

In Table 1, we list the advantages of hCPGs for medical
devices. Analog circuits are simpler than digital ones

due to the elimination of analog-to-digital conversion,
microprocessor and memory. Thus, they are easier to scale
down on a silicon chip for implanting. They have lower
power requirements that increases battery lifetime beyond
the lifetime of the patient. They integrate input signals in
real time and with perfect accuracy irrespective of the
number of channels or compartments in the neurons,
and of the number of neurones in the network. However,
analog hCPGs are difficult to program not least because
of their chaotic dynamics.

The challenge in engineering neural networks for
medicine therefore lies in finding the network parameters
(neuronal and synaptic conductances, channel gate and
kinetic parameters) that enable the network to emulate the
bCPG. For the simplest networks such parameters can be
obtained by trial and error (Nogaret et al. 2013). For more
complicated networks such as the mammalian respiratory
CPG in Fig. 1, analytical techniques must be devised to
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Figure 2. Challenges for hCPG
pacemaker: adaptation of the heart to
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A, vagus nerve (cVN) activity modulates
heart rate across the respiratory cycle to
produce respiratory sinus arrhythmia (RSA).
The phase (and amplitude) of heart rate
modulation could be shifted to any part of
the respiratory cycle using a hCPG. RSA
arises from the respiratory bCPG oscillator
depicted in Fig. 1. B, heart rate (HR)
correlates to the breathing rate to provide
adaptation that is proportional to the
increase in physical effort. This coupling is
again based on brainstem circuitry (Fig. 1).
C, the atrio-ventricular delay (τAV) and
inter-ventricular delays (τVV) also adapt to
heart rate. Beat-to-beat adaptation of these
delays can be integrated in pacing by
hCPGs. Abbreviations: AV, atrio-ventricular;
f, frequency; PN, phrenic nerve
(diaphragm); SN, sympathetic nerve; VV,
inter-ventricular; φ, phase.

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society



768 A. Nogaret and others J Physiol 593.4

Table 1. Comparative merits of sCPGs and hCPGs

Digital/software CPGs (sCPGs) Analog/hardware CPGs (hCPGs)

Cons Analog (in) → ADC → CPU → DAC → Analog
(out)

Pros Analog (in) → Analog neurons → Analog
(out)

Clocked digital electronics (CPU, ADC, DAC) Asynchronous electronics capable of
responding to stimuli in real time

Slow numerical integration of real stimuli by
Hodgkin–Huxley-like models

Instantaneous integration of stimuli

Accuracy and speed of computation
decreases when the network size increases

Accuracy and speed is independent of the
size of the network

Increasingly simple neuron approximations
need to be considered as the network size
increases to keep integration tractable

Realistic multichannel neurons can be
integrated in networks of arbitrary size

Hard to scale down Easy to scale down to a few square
millimetres (no ADC, DAC or CPU needed)

Battery lifetime: 10 years Battery lifetime >> patient life
Pros Ease and flexibility of programming software Cons Complex programming of analog chips

Abbreviations: ADC, analog-to-digital converter; CPU, central processing unit; DAC, digital-to-analog converter.

generate these parameters automatically. Such techniques
exist and have been developed in recent years to infer the
parameters of systems of non-linear differential equations
from the assimilation of electrophysiological data (Vanier
& Bower, 1999; Jolivet et al. 2008; van Geit et al. 2008).
It is therefore conceivable that if the activity of the PN,
cVN and RVLM output neurons can be measured as
a function of the electrical activity of the inputs, over a
wide dynamic range of inputs (e.g. sensory feedback), a
quantitative model of the respiratory CPG can be inferred
and tested. Data assimilation methods have been used
to build quantitative neuron models and this is what we
describe in the next section.

Data assimilation – a novel automated method for
building biologically accurate hCPGs

Mathematical tools that infer hidden parameters from
experimental data are routinely used by medical
practitioners when reconstructing internal organs with
computer tomography. Inverse methods of this kind
generally rely on the knowledge of a mathematical model
(describing how X-rays interact with biological tissue)
together with the measurement of a model variable
(the intensity of scattered photons) to infer parameters
inaccessible to the experimenter (the volume density
of biological tissue). Inferring the internal parameters
of neurons and networks, however, requires a more
sophisticated algorithm that accounts for the non-linear
nature of the models (Abarbanel, 1993). This methodology
is based on Takens’ embedding theorem that states that,
under certain conditions, a non-linear system can be

reconstructed from a sequence of observations of the state
of a dynamic system (Takens, 1981). If the observation is
the recording of a neuron membrane voltage, all internal
parameters of the neuron (channel conductances, gate
threshold voltages and kinetic parameters) may be inferred
from the time series data as long as the current wave-
form stimulating the neuron is sufficiently varied to
activate every time constant of the neuron. In this
case, the inverse problem is fully constrained meaning
that data assimilation yields a single value for each
parameter of the model. These theoretical premises
have in recent years spurred the search for parameter
extraction methods capable of constructing quantitative
neuron models by assimilation of the electrophysiological
recordings of biological neurons (Vanier & Bower, 1999;
Jolivet et al. 2008; van Geit et al. 2008). One approach
started from semi-empirical Hodgkin–Huxley (Hodgkin
& Huxley, 1952) models incorporating tabulated values
for channel activation, inactivation and kinetic parameters
and extracting the ion channel conductances. The problem
of fitting these conductances to the electrophysiological
data is essentially a linear one. Optimal conductances have
been inferred from random parameter search (Tuckwell
& Richter, 1978; Baldi et al. 1998; Goldman et al. 2001;
Golowasch et al. 2002; Prinz et al. 2003; Huys et al.
2006; Lepora et al. 2012), evolutionary (Eiben & Smith,
2003; Hobbs & Hooper, 2008) and genetic algorithms
(Achard & De Schutter, 2006; Druckmann et al. 2007;
Kobayashi et al. 2009; Buhry et al. 2011; Hendrickson
et al. 2011; Marasco et al. 2012;), gradient descent
methods (Reid et al. 2007) and simulated annealing
(Pospischil et al. 2008; Brookings et al. 2014). A second
category of methods has been developed to infer the

C© 2014 The Authors. The Journal of Physiology C© 2014 The Physiological Society
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non-linear parameters that control the time dependence
and voltage dependence of channel conductances. Vavoulis
et al. (2012) have extracted activation thresholds, time
delays and ion channel conductances from Lymnaea
motoneurons by performing time series analysis with
Kitagawa’s self-organising state space approach (Kitagawa,
1998) and the Kalman filter (Evensen, 2009). Kostuk
et al. (2012) have demonstrated Monte Carlo path integral
methods and Meliza et al. (Toth et al. 2012; Meliza et al.
2014) have modelled different populations of neurons
from the songbird high vocal centre using interior point
optimisation, a non-linear convex optimisation method
(Gill et al. 2005; Wächter & Biegler, 2006). In a first step, the
interior point filter automatically generates the parameters
(i.e. membrane ionic conductances and their kinetics)
that best synchronise the model to the experimental time
series data (Fig. 3). In a second step, the completed
neuron model is validated by comparing its response
to any current waveform with experimental observation
(Fig. 3). Neuron models built from data assimilation are

remarkably accurate at making quantitative predictions of
voltage oscillations elicited by arbitrary current waveforms
(Meliza et al. 2014). This approach may now be extended
to finding the parameters of networks to build hCPGs that
accurately reproduce the behaviour of bCPGs.

Besides building predictive models, data assimilation
offers a novel route for categorising neuron types
and neuron functions based on the types of ion
channels expressed in electrophysiological experiments.
Provided the electrical parameters of ion channels can
be extracted with sufficient accuracy, the method may
identify subunits of ion channels based on the different
conformal properties of their constituting proteins.
Through assimilation of electrophysiological data, Meliza
et al. (2014) have succeeded in identifying neurons
projecting to different cortices of the songbird high vocal
centre. Given the one-to-one correspondence between ion
channels and genes (Warren et al. 2010; Lovell et al. 2013)
data assimilation may also reveal the genes expressed in
different categories of neurons. In summary, non-linear
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Figure 3. Construction of quantitative neuron models
Top, neuron parameters including the channel conductances, gate thresholds and kinetic parameters are extracted
by assimilating electrophysiological recordings of interneurons of the songbird high vocal centre with interior point
optimisation (green curve). The current protocol used to stimulate the neuron was generated by the chaotic Lorenz
system. Bottom, predicted response made by integrating the experimental current protocol with the completed
neuron model (red curve). The prediction is compared with the observed membrane voltage (black curve). This
demonstrates the power of data assimilation for constructing predictive neuron (and network) models (after Meliza
et al. 2014).
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optimisation enables the construction of both neurons
and neural network models that accurately emulate the
response of biological CPGs. This recent work has removed
a major obstacle to the engineering of efficient implantable
hCPGs.

Proof of concept – artificially inducing respiratory
sinus arrhythmia with two/three phase hCPG

The neuronal hCPG we have built is based on analog
neurons which integrate the Hodgkin–Huxley equations
in real time that is suitable for neuro-stimulation (Nogaret,
2012; Nogaret et al. 2013; Fig. 4). Our hCPG applies
biphasic neuron bursts of controlled duration and timing
to the vagus nerve, which we stimulate unidirectionally
using selective anodal block clamp (Jones et al. 1995) to
slow the heart rate. The stimulation can be phase tuned to
target any point within the respiratory cycle with pulses of
amplitude varying between 0 and 4.3 V (Fig. 5). Our hCPG
synchronises heart rate modulation to the respiratory
cycle by receiving signals from either the phrenic nerve
or diaphragmatic electromyographic activity. Switching
the timing of stimulation from inspiration to expiration
affected the amplitude of heart rate modulation (Nogaret
et al. 2013). The sensitivity of the heart rate response to
stimulation in the different respiratory phases was found
to vary (Nogaret et al. 2013) as shown in Fig. 5.

To test the adaptive ability and robustness of our
hCPG, we changed respiratory rate and found that
stimulation naturally synchronises to respiration even at
high breathing rates (Fig. 6). This novel analog hCPG
now provides us with the ability to induce RSA in rats
and mimic some functional aspects generated within the
cardio-respiratory networks of the ventrolateral medulla.

Future applications for bioelectronic medicine

Because of their stability and ability to integrate incoming
physiological signals in real time, implantable analog
hCPGs are likely to have numerous applications in both
basic science and medical therapeutics where the end-
ogenous rhythmic drive required by a biological system
is suppressed or lost in disease. Table 1 emphasises the
unique and potentially game changing advantages that
analog hCPGs have over digital devices. Analog hCPGs
will provide novel and more naturalistic ways to modulate
body systems because of their adaptive characteristics
allowing them to respond to changes in the environment.
They can integrate incoming sensory information and
provide an appropriate effective output dependent upon
behavioural state.

An application we are exploring is cardiac pacemaking
and the generation of RSA for improving cardiac function;
the latter is based on a prediction we made using a new
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mathematical model (Ben-Tal et al. 2012, 2014). Current
cardiac pacemakers are pre-set and although some have
the ability to respond to acceleration or movement or
body temperature this is limited and restrictive. The
adaptive properties of hCPGs can be harnessed with data
assimilation to provide heart rate adaptation to the rate
of respiration and beat-to-beat adaptation of τVV and τAV

delays in cardiac resynchronisation therapy, for example.

This would, for the first time, provide physiological
pacing and physiological gearing of the degree of exertion
(as detected from changes in respiratory rate) with
appropriate levels of cardiac pacing. This could include, for
example, appropriate post-exercise pacing which is likely
to be important in protecting a failing heart. Given the
possibility for modulation of synaptic transmission at the
level of the cardiac vagal ganglion McAllen et al. (2011),
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the data from Bibevski & Dunlap (1999) is most pertinent:
synaptic transmission efficacy at the pre-ganglionic to
post-ganglionic synapse (within the cardiac vagal ganglia)
was depressed in a canine heart failure model. Clearly this
would compromise the efficacy of such a device in heart
failure, at least in dogs. However, recent data from the
rat indicate no such loss of transganglionic transmission
for controlling cardiac vagal activity up to 4 h post myo-
cardial infarction (Passamani et al. 2014). Nevertheless,
any application to a model (or human) in which trans-
mission through the cardiac ganglion is suppressed in
disease states can be circumvented by stimulating the SA
node directly via the right atrium. This would also alleviate
issues of vagus-induced negative ionotropism, which
may compromise any beneficial effects of vagal-induced
respiratory sinus arrhythmia pacing in the failing heart.
Finally, other applications might include generation of
respiratory and locomotor rhythmicity following spinal
cord injury but this all remains a challenge for the future.
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